DNA damage, senescence and cancer

George A. Garinis garinis@imbb.forth.gr

Institute of Molecular Biology and Biotechnology-FORTH

Global genome nucleotide excision repair (GG-NER)

Global genome nucleotide excision repair (GG-NER)

Global genome nucleotide excision repair (GG-NER)

DNA polymerase δ/ε, RFC PCNA and DNA ligase

Transcription-coupled nucleotide excision repair (TC-NER)

Transcription-coupled nucleotide excision repair (TC-NER)

Nucleotide Excision Repair (NER) - Patients

Xeroderma Pigmentosum (XP)

- Photo (UV) sensitivity
- Pigmentation abnormalities
- Atrophic skin
- Skin cancer (>2000x↑)
- Accelerated neurological degeneration
 7 genes involved:
 XPA XPG

Skin tumors in xeroderma pigmentosum

Management of XP cancer

- very rigorous sun-light protection
- regular dermatologic intervention
 preventive oral retinoids (~50%) (Isotretinoid, Accutane®)

Neglect in patient XP20RO (XPC)

Cockayne Syndrome (CS)

- Photo (UV) sensitivity
- Growth failure
- Neurological abnormalities
- Retinal degeneration
- Cachexia
- Impaired sexual developm.
 No skin cancer !
 5 genes: CSA,CSB
 combined with XP: *XPB, XPD, XPG*

Defects in NER may trigger aging and tumor development

Global Genome Nucleotide Excision Repair

Xeroderma Pigmentosum (XP) (predominantly a GG-NER defect)

- sun (UV) sensitivity- pigmentation abnormalities
- dry, atrophic skin
- skin cancer (>2000x î)
- accelerated neurological degeneration
- 7 genes involved: *XPA - XPG*

Transcription coupled Nucleotide Excision Repair Cockayne Syndrome (CS) (TC-NER defect)

- sun (UV) sensitivity
- growth failure
- neurological abnormalities (dysmyelination)
- retinal degeneration
- accelerated aging

2 genes: CSA,CSB no skin cancer !

Can mouse models mimic the patients?

Summary phenotype of Csb^{m/m}/Xpa^{-/-} mutant mice

- Normal embryonic development
- Born at submendelian frequency (likely due to birth stress)
- Runted, growth retarded, cachexia
- Purkinje cell loss cerebellum
- Ataxia
- Kyphosis
- Osteoporosis?
- Enhanced retinal cell loss
- Premature death (around weaning)
- Absence of apoptosis or proliferative defects in the liver

Day 21

PLoS Biology 2007

Summary phenotype of Ercc1^{-/-} mice

Growth delay Kyphosis Progressive ataxia Infertility Cachexia Sarcopenia Polyploidization in liver/kidney Premature death at ~3 weeks

Csb-Xpa mice: hepatocytes are significantly smaller

Mol Cell Biol 2007

Enhanced retinal degeneration in Csb^{m/m}/Xpa^{-/-} mice

Transcriptome analysis/Q-RT-PCR confirmation reveals

up-regulation anti-oxidant defense

down-regulation catabolic metabolism (glycolysis, Krebs, ox.phos.)

down-regulation GH/IGF1 growth axis

This response is systemic:

Csb^{m/m}/Xpa^{-/-} appear to store glycogen and fat

Gene expression profiles of NER progeroid mutants show remarkable similarity to those of naturally aged mice

NER progeroid mice respond normally by mimicking the response of old mice:

Comparison with human ageing

1. Both GH and IGF-1 <u>decline</u> with advancing age:

Lamberts et al 1997

<u>somatopause</u>:

- Reduced muscle mass
- Increased visceral fat mass
- Attenuated bone mineral density
- Cardiovascular changes
- Reduced elasticity of the skin
- Cognitive performance

(van Dam et al 2000)

GH/IGF1 mouse models live very long...

- 1. Gh-r KO mice profound decrease of hepatic IGF-1 (GH-resistant)
 - reduced somatic growth within 2 to 4 weeks after birth
 - decreased body size
 - live longer
 - increased antioxidant defense mechanisms (Bartke et al 2003)
- 2. Hypopituitary Ames/dwarf mice (deficient in GH, PRL and TSH)
 - exhibit 40-65% extension of their lifespan
 - reduced body size
 - increased anti-oxid. defense mechanisms (Brown-Borg et al. 1996).
- 3. Ghrh mutant mice and heterozygous IGF-1R KO mice
 - live longer
 - reduced body size (Flurkey et al 2001, Holzenberger et al 2003

(resp.)

- 4. GH transgenic mice (carrying a bovine GH gene)
 - renal lesions
 - hepatic alterations
 - drastic reduction in lifespan (Carter et al 2002)
- 5. CR extends lifespan and down regulates both GH and IGF-1

Correlation heat map: "mouse to mouse" correlation NER progeroid mice are highly correlated to long-lived mutants

Common processes between NER progeria, long-lived dwarfism and CR

Similar expression profiles between NER progeroid and long-lived mice

<2.5 fold

Substantial genome-wide expression parallels between NER progeroid and long-lived mice

DNA repair mutants

Ercc1-/-

 $Ercc1^{-/\Delta}$

Long-lived mice

CR mice

130W mice

Rationale of the GH/IGF1 response in NER progeroid mice

Why do *Csb^{m/m}/Xpa^{-/-}* or *Ercc1^{-/-}* mice display a caloric restricted-like response associated with long life span, whereas they live extremely short?

Rationale of the GH/IGF1 response in normal aging

Early in life, development to adulthood is priority:

- resources are used for growing and to generate progeny
- GH/IGF-1 and metabolism are high,
- however, at the expense of more DNA damage

When this goal is reached, priorities shift: "now it is important to switch from growth to maintenance"

- remaining resources are used to extend life span
- GH/IGF-1 and rate of metabolism are turned down
- will reduce the DNA damage load

Scenario for NER progeria and natural aging

- A. 13-week old $Csb^{m/m}$ mice
- B. Wt mice chronically (4 weeks) exposed to a low dose (1500ppm) of pro-oxidant DEHP

Wt mice chronically exposed to the crosslinking agent mitomycin C

How does DNA damage lead to the suppression of the GH/IGF1 axis?

- Is the repression of IGF-1R/GHR a direct response to DNA damage?
- Is the repression of IGF-1R/GHR a cell autonomous response?

Dose-dependent UV-induced suppression of IGF-1R/GHR expression in primary MDFs

Nature Cell Biology 2009

IGF-1R/GHR suppression in primary chondrocytes

Primary chondrocytes

UV irradiation leads to IGF-1R and GHR attenuation in quiescent (a) and terminally differentiated (b) cells (primary rat neurons)

Repair of persistent CPD lesions alleviates IGF-1R and GHR repression

d

Photolyases can repair UV-induced DNA lesions in a light-dependent manner

CPD and 6-4PP photolyase transgenic MEFs

Somatic maintenance vs. growth

Progeroid DNA repair mutants

- -Long-lived pituitary dwarfs -Calorie-restricted mice
- -DNA repair mutants
- -Naturally aged mice

Nature Cell Biology 2008

Is there a role for ERCC1-XPF complex in transcription during development ?

...and perhaps a role beyond NER?

The physiologic & metabolic defects in liver-specific Taf10-/- mice

... are so similar to those seen in *Ercc1*^{-/-} mice

	xpa										
	Csbm Ercct Tatto Csb Apat				FC	р	FC	р	FC	p	
	Gnr		Symbol		Csb ^{m/m} /Xpa -∕- Erc		c1≁ Taf		10-/-		
	Igi i Igfbp4	Ļ	1417962 s at	Ghr	-1.4	0.002	-1.3	0.047	-4.1	0.027	
.u	2 Igfals		1419519 at	laf1	-2.4	0.002	-1.4	0.035	-2.9	0.001	
n L	Fgfr3		1421992 a at	lafbp4	-1.3	0.001	-1.2	0.003	-1.2	0.017	
1951/	Pigil Dio1		1422826 at	lafals	-2.3	0.000	-1.8	0.013	-3.8	0.007	
Н С	Digfrl1		1421841 at	Fafr3	-1.3	0.022	-2.2	0.000	-1.6	0.035	
	Pik3r1		1450869 at	Faf1	-1.4	0.025	-1.5	0.000	-2.9	0.002	.
	Prir	j	1417991 at	Dio1	-2.0	0.002	-2.5	0.000	-109.3	0.002	GH/
	L dhb		1424414 at	Oafrl1	-1.4	0.043	-2.5	0.000	-2.5	0.008	
Ę	Pygb		1451737 at	Pik3r1	-2.0	0.032	-1.4	0.037	-8.8	0.003	
ot/ic	Gpi1 Man2d	r1	1450444 a at	Nr1h3	-1.2	0.014	-1.2	0.003	-1.7	0.029	
E a	Ldha		1437397 at	Prir	-1.7	0.000	-1.9	0.013	-3.2	0.000	
Irat	Galk1			<u> </u>		n Maa da	Бис	- 1 - /-	Taf	10-/-	
N ₄ C	Pygi Nr1h4			Symbol	Cso m/Xpa / Ercc1 /		C1 /	Tarro			
arb	Khk		1455235_x_at	Ldhb	3.0	0.035	2.8	0.006	6.8	0.022	
C	Gck		1433504_at	Pygb	1.5	0.006	1.8	0.000	4.2	0.001	
	Prodh		1420997_a_at	Gpi1	1.3	0.011	1.4	0.000	1.7	0.008	
Ε	Akr1b	7	1423687_a_at	Man2c1	1.3	0.003	1.2	0.027	1.7	0.003	
silo	Vidir		1419737_a_at	Ldha	1.1	0.002	1.1	0.031	1.7	0.002	Glu
data	Apoc2	2	1417177_at	Galk1	1.4	0.009	1.5	0.000	1.3	0.010	mote
Ē	Abhd4	1	1417741_at	Pygl	-1.4	0.000	-1.2	0.039	-1.8	0.002	mete
	Soat1		1419105_at	Nr1h4	-1.4	0.010	-1.5	0.000	-2.6	0.019	
	Pltp		1449062_at	Khk	-1.2	0.011	-1.3	0.005	-3.0	0.003	
	Adipo	r2	1425303_at	GCK	-3.7	0.011	-8.9	0.000	-6.2	0.006	
	Lipc		1417629_at	Proan	-4.4	0.004	-5.1	0.000	-2.0	0.010	
	Cyp2a	a12 x68		Csb ^{. m/m} /Xpa ≁		Ercc1 ≁		Taf10≁			
450	Cyp2c	270	1420715_a_at	Pparg	2.1	0.003	3.5	0.000	1.7	0.026	
	Cyp4f	14	1423556_at	Akr1b7	5.7	0.002	5.7	0.000	24.4	0.000	
202	Cyp4v Cyp2i	/3 5	1417900_a_at	Vldlr	2.0	0.022	2.1	0.000	4.9	0.009	
4004	Cyp2r	1	1418069_at	Apoc2	1.2	0.010	1.4	0.000	2.9	0.001	
2	Cyp2j	5	1416013_at	Pld3	1.3	0.004	1.4	0.006	2.7	0.001	Fat
	Cyp2f.	113	1439259_x_at	Abhd4	1.2	0.014	1.2	0.002	1.9	0.004	i at
	Cyp2c	113	1417697_at	Soat1	1.5	0.025	1.8	0.022	1.8	0.021	meta
	Mgst2	2	1456424_s_at	Pltp	1.3	0.008	1.3	0.021	1.6	0.032	
	Mgst3 Gsta4		1448987_at	Acadl	1.2	0.003	1.2	0.010	1.2	0.026	
a	Gstt2		1434329_s_at	Adipor2	-1.3	0.008	-1.2	0.039	-2.0	0.002	
isuo	Gstm	5	1419560_at	Lipc	-1.3	0.000	-1.2	0.013	-5.1	0.000	
use.	Nqo1			Csb ^{m/m} /Xpa ^{-/-}		Ercc1≁		Taf10-⁄-			
ant r	Hmox	1	1452502 at	Mast2	5.0	0.005	53	0.001	4.6	0.003	
, vid	Ephx1		1432332_at	Mgst2 Mgst3	1.0	0.003	1.5	0.001	4.0	0.003	
ntic	Sin3b		1440300_at	Geta/	1.7	0.012	1.0	0.002		0.002	
4	Tcf4		1417883 at	Gett2	2.8	0.043	43	0.000	2.0	0.000	Anti
	Rbbp7	7	1416842 at	Gstm 5	1.3	0.002	14	0.000	1.8	0.006	7 1111
<u>i</u>	Ahctf1	I	1423630 at	Cvah	13	0.015	13	0.002	7.6	0.003	resp
rint	Cebpa	a	1423627 at	Nao1	14	0.024	1.6	0.002	6.0	0.049	
Jone	Hopx		1448239 at	Hm ox1	19	0.001	20	0.002	2.4	0.008	
Ĕ	Nrin4	•	1422438 at	Ephx1	2.0	0.004	3.0	0.000	1.3	0.001	
-4	1 +4			P							
	Fold change										

А

GH/IGF1 axis

Glucose

metabolism

metabolism

Antioxidant response

Ercc1^{-/-} and *Taf10^{-/-}* livers share common over-represented biological processes

TFIID is assembled in *Ercc1*^{-/-} livers

General TFs are expressed normally in *Ercc1^{-/-}* livers

ERCC1-XPF is required for the transcriptional activation of genes promoting adipogenesis

ERCC1-XPF has a role in transcription distinct from that of other NER factors.

WT

Xpd^{TTD/TTD}

ERCC1-XPF interacts with TFIID subunits

The "Chip/chop" approach

ERCC1-XPF promotes active DNA demethylation on promoters associated with hepatic development

Disruption of *Ercc1* -but not of *Csb*- gene leads to the aberrant DNA methylation on promoters

Histone PTMs in *Ercc1^{-/-}* and *Csb^{m/m}* livers

Summary

Acknowledgements

Lieneke Uittenboogaard Ingrid van der Pluijm Gijsbertus van der Horst Jan Hoeijmakers Erasmus MC Rotterdam, NL

Harry van Steeg

RIVM, Bilthoven, NL

Stephen Spindler

Univ. of California, Riverside, USA

Andy Bartke

Univ. of Illinois, USA

Laura Niedernhofer

Univ. of Pittsburgh Cancer Institute, USA

Bjorn Schumacher

CECAD, Koln, GE

Theo Kosteas Irene Kamileri Ismene Karakasilioti Zisis Apostolou Ritsa leronymaki IMBB-FORTH, Heraklion, GR

Marie Curie Actions Human Resources and Mobility Activity

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

